Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 657: 124143, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663641

RESUMO

Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.

2.
Carbohydr Polym ; 319: 121198, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567724

RESUMO

Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.

3.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3833-3843, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31833697

RESUMO

Climate change seriously affects the geographical distribution of plants. Regional diffe-rences in plant response to climate change will provide important guidance for species introduction and conservation. Based on ArcGIS and MaxEnt model, we used 176 geographic information of Carpinus cordata and 13 climatic variables to reconstruct its current and future niche. The results showed that the model had a high credibility in simulating contemporary potential distribution areas. The AUC values of the test set and the training set of the model were 0.973 and 0.957, respectively. The main core suitable areas were concentrated in Qinling, Changbai Mountain and their adjacent areas, with other sporadic "island" distribution. C. cordata is not distributed in Guizhou, Jiangxi, Yunnan and Fujian, but the model predicted some suitable distribution areas in those provinces. With climate warming in the future, ecologically suitable areas of C. cordata would increase significantly, mainly as "shrinking to high altitude areas", "expanding northward", and "expanding eastward". However, core suitable areas would be slightly reduced, which would be manifested as "shrinking southward", "moderate stability", and "expanding northward". The response of C. cordata distribution to climate warming was obviously regional. Eastern Jiangsu, Anhui, and other places would become ecologically suitable areas for C. cordata because of their unique geographical location and climatic environment. The lower latitudes of the south, the original low-altitude areas might no longer be suitable for survival. The central Qinling region was a transition region from north to south, with strong buffer capacity, and climate warming had little effect on its distribution area. The Changbai Mountain and its adjacent areas at higher latitudes were more suitable for C. cordata.


Assuntos
Altitude , Mudança Climática , Betulaceae , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...